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The subject of catecholamines and stress has
occupied researchers for many years and filled
many books. A brief revew such as this cannot
cover such a broad topic. Instead, provided here
are a few concepts, reflecting somewhat different
viewpoints from those in standard textbooks.

The first of these concepts is that there are three
distinct peripheral catecholamine systems, each
with different effectors, regulation, and roles. The
three systems are the sympathetic nervous sys-
tem, adrenomedullary hormonal system, and
DOPA-dopamine autocrine/paracrine system. This
contrasts with the traditional concept, promulat-
ed by WALTER B. CANNON, of a unitary sympathoad-
renal system. It also contrasts with the notion of
HANS SELYE that release of “adrenalines” charac-
terizes the acute phase of what he called the “Gen-
eral Adaptation Syndrome.”

Both these investigators held to the view that
all forms of stress lead to the same stereotyped
response. Indeed, in line with this “doctrine of
nonspecificity,” SELYE defined stress as the non-
specific response of the body to any demand im-
posed upon it [1]. According to a relatively new
concept, however, stress responses have a primi-
tive kind of specificity, with differential respons-
es of the sympathetic nervous and adrenomedul-
lary hormonal systems, depending on the type and
intensity of the stressor as sensed by the organ-
ism and interpreted in light of experience [2].

Another concept in this paper that contrasts with
CANNON'S teachings is that instead of the sympa-
thetic nervous system becoming active only in
emergencies, tonic sympathetic nervous outflows
to several vascular beds, organs, and glands main-
tain levels of a variety of monitored variables, both
under resting conditions and in response to eve-

ryday challenges such as orthostasis, locomotion,
the post-prandial state, and altered temperature.

This paper also notes a closer association be-
tween the hypothalamo-pituitary-adrenocortical
system and adrenomedullary hormonal system  in
several forms of stress than between the sympa-
thetic nervous and adrenomedullary hormonal
systems (Table 1). In fainting, adrenomedullary
activation with concurrent sympathoinhibition
precedes and may precipitate the acute neurocir-
culatory collapse.

Finally, offered for consideration here is the
notion that stress and distress can contribute to
acute and chronic diseases, by worsening inde-
pendent pathologic states and inducing “allosta-
tic load.”

These concepts may provide a theoretical basis
for scientific integrative medicine in the post-ge-
nome era.

Three peripheral catecholamine systems

WALTER B. CANNON, extending CLAUDE BERNARD'S
concept of the milieu intérieur, taught that coor-
dinated body processes work toward the goal of
an ideal set of steady-states, for which he coined
the term, “homeostasis” [3-5]. CANNON'S research
was the first to document the role of adrenal se-
cretion in rapid responses of the organism to
threats to homeostasis [6,7].

CANNON taught that the adrenal gland and sym-
pathetic nervous system functioned as a unit. In-
deed, in 1939, he formally proposed epinephrine
(adrenaline) not only as the active principle of the
adrenal gland but also as the neurotransmitter of
the sympathetic nervous system [8]. If this had
proven to be the case,  this would have confirmed
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the functional unity of the the sympathoadrenal
system. In 1946, however,  about a year after CAN-
NON'S death, VON EULER correctly identified nore-
pinephrine as the sympathetic neurotransmitter
[9]. As discussed below, the notion of a unitary
sympathoadrenal system continues in medical
thinking [10-13], despite persuasive evidence for
differential changes in sympathetic nervous and
adrenomedullary hormonal activities not only with
different forms of stress [13] but also as a func-
tion of variables such as aging and obesity [14,15].

Dopamine, the third member of the small fam-
ily of endogenous catecholamines besides nore-
pinephrine and epinephrine, functions in the
brain as a neurotransmitter. Understanding of its
functions in the periphery has lagged behind. At
least in some organs, most notably the kidneys,
dopamine seems to function neither as a neuro-
transmitter, released from putative dopaminergic
nerves or co-released with norepinephrine from
sympathetic nerves, nor as a hormone, released
from the adrenal medulla along with epinephrine.
Instead, dopamine production in the kidneys
appears to depend mainly on uptake of its pre-

cursor, L-3,4-dihydroxyphenylalanine (L-
DOPA), from the circulation, with conversion to
dopamine by L-aromatic-amino-acid decarbox-
ylase in proximal tubular - i.e., non-neuronal and
non-chromaffin - cells [16,17]. Dopamine exit-
ing the cells then appears to act as an autocrine/
paracrine substance, promoting natriuresis by lo-
cal inhibition of Na+/K+ ATPase.

More of dopamine production and metabolism
take place in the mesenteric organs than in the
brain, sympathetic nerves, or adrenal chromaffin
cells [18]. At least some of this production arises
from tyrosine hydroxylase being expressed in non-
neuronal cells such as gastric parietal, pancreatic
acinar, and lamina propria cells [19,21]. It is pos-
sible that locally produced dopamine contributes
to regulation of gastrointestinal motility or bicar-
bonate secretion.

Tonic activity of the sympathetic nervous
system

According to CANNON rapid activation of
homeostatic systems - especially of the “sym-

Table 1.
Hypothalamo-pituitary-adrenocortical (HPA), adrenomedullary hormonal system (AHS),

and sympathetic nervous system (SNS) responses to different stressors

Notes: Different intensities are indicated from 0 through ++++, based on the cited References, weighed equally. There is a generally
closer association between AHS and HPA than between AHS and SNS responses.

Condition HPA AHS SNS References
Active Escape/Avoidance in rats + + ++ 75,79
Cardiac Arrest (or Bypass) +++ ++++ ++ 99-106
Cold Exposure, Hypothermia + ++ ++++ 69-72
Cold Exposure, No Hypothermia 0 + +++ 29,37,64-68
Exercise + ++ +++ 65,82-85
Exercise to Exhaustion ++ +++ ++++ 84,86,87
Fainting ++ ++++ 0 44,50,51,89
Glucoprivation +++ ++++ + 29,58,59
Handling in rats ++ ++ + 29,92,93
Hemorrhagic Hypotension +++ +++ + 29,60-63
Hemorrhage, No Hypotension + + ++ 29,60
Immobilization in rats ++++ ++++ ++++ 29,90-92
Laboratory Mental Challenge ++ ++ + 26,80,81
Pain ++ +++ ++ 5,29,73,74
Passive/Immobile Fear ++ +++ + 5,75-79
Public Performance ++ +++ + 26,85,88
Social Stress in rhesus monkeys ++ ++ ++ 107
Surgery + + ++ 94-98
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pathaodrenal system” - in emergencies would pre-
serve the internal environment, by producing com-
pensatory and anticipatory adjustments that would
enhance the likelihood of survival. In the shel-
tered confines of a laboratory, however, with con-
trolled temperature and ad libitum water, nutri-
ents, and calories, mammals did not seem to re-
quire an intact sympathetic nervous system [22].

Compensatory activation of other vasoactive
systems after destruction of the sympathetic nerv-
ous system helps to explain why many workers,
including CANNON, erroneously concluded that the
sympathetic nervous system acts only as an “emer-
gency” system [23,24]. By now it is appreciated
that even under resting conditions, pulse-synchro-
nous bursts of skeletal muscle sympathetic nerve
activity and plasma levels of norepinephrine are
readily detectable, and norepinephrine continuously
enters the venous drainage of most organs. More-
over, ganglion blockade abolishes skeletal sympa-
thetic nerve traffic and markedly decreases plasma
norepinephrine levels; and interference with gan-
glionic neurotransmission, destruction of sympa-
thetic nerves or blockade of catecholamine recep-
tors consistently decreases blood pressure.

It is also by now clear that activities of daily
life, such as meal ingestion [25], public speaking
[26], changing posture [27], and movement - i.e.,
not only emergencies - are associated with con-
tinual alterations in sympathetic nervous system
outflows, maintaining appropriate blood flow to
the brain, body temperature, delivery of metabol-
ic fuel to body organs, and so forth. Each of these
activities is associated with a somewhat different
set of “normal” apparent steady-states, directed
by the brain and determined by coordinated ac-
tions of a variety of effector systems. This princi-
ple leads directly to the concept of “allostasis,”
discussed below.

Specificity vs. non-specificity of responses to
stressors

According to CANNON, whether the threat were
exposure to cold, hemorrhage, hypoglycemia, or
distressing emotional encounters,  the response
in these emergencies would be essentially the
same [3,5].

SELYE introduced and popularized stress as a
medical scientific idea. According to SELYE'S the-
ory, “Stress is the nonspecific response of the body
to any demand upon it [1]. Responses to stressors
would have specific and nonspecific components,
and he referred to only the nonspecific compo-
nent as “stress.” After removal of specific respons-
es from consideration, a nonspecific syndrome
would remain. Although nonspecific with respect
to the inciting agents, the stress response itself was
viewed to consist of a stereotyped pathological
pattern, with enlargement of the adrenal glands,
involution of the thymus gland (associated with
atrophy of lymph nodes and inhibition of inflam-
matory responses), and peptic bleeding or ulcer-
ation. CHROUSOS and Gold [28] modified the doc-
trine of nonspecificity, by proposing that above a
threshold intensity, any stressor would elicit the
“stress syndrome.” More than a half century
elapsed before SELYE'S doctrine of nonspecificity
underwent experimental testing, which failed to
confirm it [29].

By now researchers have largely abandoned
both CANNON'S and SELYE'S notions of stereotyped,
nonspecific neuroendocrine responses regardless
of the stressor. More modern theories view stress
as a sensed threat to homeostasis [30,31], where
the response has a degree of specificity, depend-
ing among other things on particular challenge to
homeostasis and the organism's perception of the
stressor and ability to cope with it [32].

A homeostatic definition of stress

Stress occurs when the organism perceives a
disruption or a threat of disruption of homeosta-
sis. Central to the present theory is that the body
possesses numerous homeostatic comparators,
which have been called “homeostats” [33]. Each
homeostat compares information with a setpoint
for responding, determined by a regulator. Home-
ostatic systems typically use multiple effectors to
change values for the controlled variable. The
loop is closed by monitoring changes in the lev-
els of the controlled variable, via one or more
monitored variables.

By analogy, in a home temperature control sys-
tem, the thermostat plays a central role, by sensing
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discrepancy between the setpoint, determined by a
regulator, and the temperature, which produces
differential bending of metal bands in the thermo-
stat. This type of system is a classical example of
regulation by negative feedback. Home tempera-
ture control systems always include multiple effec-
tors. The redundancy comes at relatively little cost,
compared with three advantages. The multiplicity
extends the range of control of external tempera-
tures where the internal temperature can be main-
tained; when a single effector fails to function, oth-
ers are activated compensatorily, helping maintain
the temperature at about the set level; and one can
pattern the use of the effectors as appropriate to
maximize economy and efficiency.

A tremendous array of homeostatic systems
detect perturbations of monitored variables. In line
with the home heating analogy, this even includes
afferent information to the brain about cutaneous
and blood temperature, leading to altered activi-
ties of cholinergic and noradrenergic nerve fibers
in the skin that regulate sweating and vasomotor
tone [34].

Principles of homeostatic system operation

Homeostatic systems operate according to a few
principles, which, despite their simplicity, can ex-
plain complex physiological phenomena and help
to resolve persistently controversial issues in the
area of stress and disease. Homeostatic systems
always include regulation by negative feedback.
Increases in values of the monitored variable re-
sult in changes in effector activity that oppose and
thereby “buffer” changes in that variable. This feed-
back regulation can be modulated at several levels
and therefore can be quite complex.

Homeostatic systems generally use more than
one effector, for the same reasons as home tem-
perature control systems. Effector redundancy
extends the ranges of control of monitored varia-
bles. It enables compensatory activation of alter-
native effectors, assuming no change in homeo-
stat settings. Examples of compensatory activa-
tion in physiology include augmentation of sym-
pathoneural responsiveness by adrenalectomy,
hypophysectomy, or thyroidectomy [35-37]. Final-
ly, effector redundancy introduces the potential

for patterned effector responses. Patterning of neu-
roendocrine, physiological, and behavioral effec-
tors increases the likelihood of adaptiveness to the
particular challenge to homeostasis, providing
another basis for natural selection to favor the
evolution of systems with multiple effectors.

Different homeostats can regulate the activity
of the same effector system. For instance, the os-
mostat and volustat share the vasopressin effector
[38]. Blockade of afferent information to or inter-
ference with the function of a homeostat increas-
es the variability of levels of the monitored varia-
ble. Thus, baroreceptor deafferentiation increas-
es the variability of blood pressure, as does bilat-
eral destruction of the nucleus of the solitary tract,
the likely brainstem site of the arterial barostat [39].

Even a simple homeostatic reflex reflects stress,
when a perceived discrepancy between a setpoint
for a monitored variable and information about the
actual level of that variable elicits compensatory
responses to decrease the discrepancy. One way of
looking at stress is as a condition where expecta-
tions, whether genetically programmed, established
by prior learning, or deduced from circumstances,
do not match the current or anticipated perceptions
of the internal or external environment, and this
discrepancy between what is obser-ved or sensed
and what is expected or programmed elicits pat-
terned, compensatory responses.

What is distress?

Distress is aversive to the organism, as evi-
denced by motivation for learning to escape or
avoid the stressor. The homeostat theory does not
assume an equivalence of noxiousness (i.e., neg-
atively reinforcing properties) with production of
pathological changes; that is, the theory does not
assume that distress causes disease. In contrast,
SELYE characterized distress as unpleasant or harm-
ful [1], without separating these two very differ-
ent characteristics. He never incorporated the re-
lationship between distress and disease explicitly
in his theory. As noted above, SELYE'S theory em-
phasized the nonspecificity of the stress response,
whereas according to the homostatic theory, the
experience of distress responses depends on the
character, intensity, and meaning of the stressor
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as perceived by the organism and on the organ-
ism's perceived ability to cope with it. Distress
responses, as all stress responses, have a “pur-
pose,” mitigating effects of a stressor in some way.
This applies not only to neuroendocrine aspects
of those responses (such as the glucose counter-
regulatory actions of pituitary-adrenocortical and
adrenomedullary stimulation during insulin-in-
duced hypoglycemia) but also to psychological
aspects (such as conditioned aversive and instru-
mental avoidance learning). Distress responses
evolved and probably continue to be expressed
even in higher organisms, including humans who
actually are only rarely exposed to truly “fight-
or-flight” agonistic encounters, because of the im-
portance of those responses in instinctive com-
munication. SELYE'S theory did not consider the
communication aspect of distress.

Allostasis and allostatic load

Levels of physiological activity required to re-
establish or maintain homeostasis differ, depend-
ing on continually changing conditions in which
the organism finds itself - e.g., running vs stand-
ing vs lying down. “Allostasis,” a term used by
STERLING and EYER in 1988 [40], refers to levels
of activity required for the individual to “main-
tain stability through change” - i.e., to adapt [40-
42]. In terms of the homeostatic theory, “allosta-
sis” refers to the set of apparent steady-states
maintained by multiple effectors. In the analogy
of the home temperature control system, one can
regulate temperature at different levels, by ap-
propriate use of effectors. Among individuals,
levels of glucose, blood pressure, body temper-
ature, metabolism, and so forth can be held sta-
ble at different levels, with different patterns of
effector activation.

Homeostat resetting redefines the conditions
required to maintain homeostasis. Regulation
around an altered apparent steady-state is the es-
sence of allostasis. This would be analogous to a
different thermostatic setting in the winter com-
pared to the summer. A neuroendocrine example
would be the hyperglycemia of exercise. Even in
anticipation of the need for metabolic fuel, by ac-
tivation of “central command,” the blood glucose

level increases to a new steady-state value. Reset-
ting alters activities of multiple effector systems
required to maintain allostasis, at least for short
durations. During stress, short-term changes in
homeostatic settings generally enhance the long-
term well-being and survival of the organism.
Responses during exercise provide an obvious
example. When superimposed on a substrate of
pathology, however, homeostatic resetting can
cause harm. For instance, in the setting of ischemic
heart disease, global or patterned increases in sym-
pathetic outflows from homeostat resetting would
increase cardiac work, the resulting imbalance
between oxygen supply and demand precipitat-
ing angina pectoris, myocardial infarction, or sud-
den death.

“Allostatic load” [43] refers to effects of pro-
longed continuous or intermittent activation of
effectors involved in allostasis. In the analogy of
the home temperature control system, allostatic
load would increase if a window or door were left
open. In this situation, one or more effectors might
be activated frequently or even continuously. An
even more extreme example would be having the
air conditioner and the furnace on at the same time,
as is the case in an overheated apartment in the
spring when there is a warm day before the boil-
ers have been shut down. Continued use of the
furnace and air conditioner in opposition to one
another, an example of an inefficient ”allostatic
state,” consumes fuel and contributes to wear-and-
tear on both pieces of equipment. Long-term al-
lostatic load - the wear and tear cost of adaptation
-provides a conceptual basis for studying long-
term health consequences of stress.

Stressor-specific responses of catecholamine
systems

After adequately sensitive assay methods for
plasma levels of norepinephrine and epinephrine
became available, evidence rapidly accumulated
for different noradrenergic vs. adrenergic respons-
es in different situations [10,44-46]. A new con-
cept began to emerge, in which norepinephrine
levels, and thereby overall sympathetic nervous
“activity”, would play key roles in appropriate dis-
tribution of blood volume and homeostasis of
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blood pressure (or blood delivery to the brain),
such as during orthostasis, cold exposure, mild
blood loss, locomotion, exercise, altered salt in-
take, and water immersion. Epinephrine levels, and
thereby adrenomedullary hormonal system “ac-
tivity,” would respond to global or metabolic
threats, such as hypoglycemia, hemorrhagic hy-
potension, exercise beyond an anerobic threshold,
asphyxiation, emotional distress, and shock. Evi-
dence also has accumulated for an association
between norepinephrine and active escape, avoid-
ance, or attack, and an association between epine-
phrine and passive, immobile fear. Table 1 pro-
vides some examples of different patterns of sym-
pathetic nervous, adrenomedullary hormonal, and
hypothalamo-pituitary-adrenocortical responses to
different stressors.

Thus, in contrast with the doctrine of nonspe-
cificity, according to the homeostatic theory of
stress, activities of effector systems are coordinated
in relatively specific patterns, including neuroen-
docrine patterns. These patterns serve different
needs, and the sympathetic nervous and adrenom-
edullary hormonal systems play important roles
in many of them. For instance, sympathetic nerv-
ous system activation predominates in response
to orthostasis, moderate exercise, and exposure
to cold, whereas adrenomedullary hormonal sys-
tem activation predominates in response to glu-
coprivation and emotional distress (Table 1).

In terms of the body's thermostat, studies of
humans exposed to cold or with mild core hypo-
thermia have provided support for the notion of
primitive specificity of neuroendocrine stress re-
sponses. Cold exposure increases plasma nore-
pinephrine levels, with smaller increases in plas-
ma epinephrine levels, consistent with sympathetic
neuronal activation and relatively less adrenom-
edullary hormonal activation. Mild core hypother-
mia also increases antecubital venous levels of
norepinephrine but not epinephrine [34]. Both
norepinephrine and epinephrine levels in arterial
plasma increase in this setting, but with larger nore-
pinephrine responses. These findings make sense,
in that one can maintain body temperature effec-
tively by sympathetically-mediated cutaneous va-
soconstriction, piloerection, and shivering. When
these mechanisms give way, and core tempera-

ture falls, then high circulating epinephrine levels
increase generation of calories [47], associated
with the experience of distress, which motivates
escape and avoidance, and augments norepine-
phrine release from sympathetic nerve terminals
for a given amount of nerve traffic [48].

For each stress, neuroendocrine and physiolog-
ical changes are coupled with behavioral chang-
es. For instance, the regulation of total body wa-
ter in humans depends on an interplay between
behavior (the search for water and drinking), an
internal experience or feeling (thirst), and the elic-
itation of a neurohumoral response pattern (in this
case dominated by vasopressin, the antidiuretic
hormone; and to a lesser extent angiotensin, a
potent stimulator of drinking). Evoked changes
in homeostat function often produce not only neu-
roendocrine and physiological effects but also
behavioral responses; however, because of tradi-
tional boundaries among physiology, endocrinol-
ogy, and psychology, interactions producing in-
tegrated patterns of response remain incomplete-
ly understood.

Medical and psychological consequences of
stress and allostasis

Induction of a positive feedback loop in a
homeostatic system evokes instability. An exam-
ple would be renin-angiotensin-aldosterone sys-
tem activation in congestive heart failure. Activa-
tion of this system increases sodium retention and
vascular tone, leading to increased cardiac preload
and afterload that worsen the congestive heart fail-
ure. Therefore, treatment with an angiotensin-con-
verting-enzyme inhibitor or angiotensin II recep-
tor blocker can successfully treat congestive heart
failure [49].

Another example may be fainting reactions.
Fainting is preceded by high circulating epinephrine
levels and withdrawal of sympathetic vasoconstric-
tor tone [50,51]. This elicits skeletal muscle vasodi-
lation, and total peripheral resistance to blood flow
falls. If there were enough “shunting” of blood to
the skeletal muscle, then blood flow to the brain-
stem might fall. The person would not feel “right.”
This could evoke more adrenomedullary secretion
of epinephrine, and the consequent neurocircula-
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tory positive feedback loop would lead to critical
brainstem hypoperfusion and loss of consciousness
within seconds to minutes.

In people who faint repeatedly, it is often the
case that between episodes they do not feel nor-
mal. Patients who are susceptible to neurocardio-
genic syncope often complain of chronic fatigue,
headache, chest pain, orthostatic intolerance, dif-
ficulty concentrating, and heat intolerance, which
can be debilitating. The patients also have tonic
suppression of norepinephrine spillover from the
heart [52]. In essence this may reflect consequenc-
es of long-term allostatic load, as discussed be-
low.

Induction of a positive feedback loop “nested”
in a larger system that includes negative feedback
can lead to a new steady-state group of settings
and values for monitored variables, rather than
”explosion” of the system. For example, a distress-
ing situation might elicit fear, resulting in release
of norepinephrine in the brain and epinephrine in
the periphery, both of which could augment vig-
ilance behavior and heighten the experience of
distress, resulting in greater fear [53]. The organ-
ism could enter an “escape mode,” with a differ-
ent set of homeostatic regulatory settings; how-
ever, there is a risk of the positive feedback loop
leading to a behavioral “explosion”, panic, or a
pathophysiologic “explosion”, pulmonary edema.
The notion of induction of a nested positive feed-
back loop can also provide a model for develop-
mental changes in adolescence, where stability
would actually be abnormal, but there is a greater
chance for both psychological and physiological
disorders to emerge.

The homeostatic theory of stress and the con-
cept of allostasis can help understand chronic as
well as acute medical consequences of stress.
Chronic activation of allostatic effectors in allo-
static states increases allostatic load. For instance,
chronic elevations in adrenomedullary and hy-
pothalamic-pituitary-adrenocortical outf lows
may worsen insulin resistance, and chronic car-
diac sympathetic activation may accelerate car-
diovascular hypertrophy and development of
heart failure [54].

Another application of the homeostatic idea to
medical consequences of stress is in terms of the

perceived ability to cope. As noted above, an or-
ganism experiences distress upon sensing that the
effector responses will not be sufficient to restore
or maintain allostasis. In contrast with distress,
stress does not imply a conscious experience. For
instance, even heavily sedated humans have sub-
stantial adrenomedullary stimulation in response
to acute glucoprivation. Indeed, the larger
adrenomedullary response to the same stressor in
alert than in sedated humans might provide a
measure of the distress. Distress instinctively elicits
observable signs and pituitary-adrenocortical and
adrenomedullary activation [2,32]. Via these neu-
roendocrine changes, distress could worsen patho-
physiologic processes. For instance, because of
adrenomedullary activation, in a patient with cor-
onary artery stenosis, distress could elicit cardio-
vascular stimulation and produce an excess of
myocardial oxygen consumption over supply, pre-
cipitating myocardial infarction or lethal ventricu-
lar arrhythmias. Moreover, long-term distress could
augment both the risk of a mood disorder and the
risk of worsening coronary disease.

Long-term physical or mental consequences of
stress would depend on long-term effects of allo-
static load. Prolonged, intensive activation of ef-
fector systems could exaggerate effects of intrin-
sic defects in any of them, just as increased air
pressure in a tire could expand and eventually
“blow out” a weakened area. It is not difficult to
imagine that repeated or long-term stress or dis-
tress could lead to a medical or psychiatric “blow-
out.”

Maintenance of allostatic states requires ener-
gy. This requirement is perhaps clearest in allos-
tasis of core temperature. In mammals, mainte-
nance of a constant core temperature accounts
for a substantial proportion of total body energy
expenditure at rest. One may hypothesize that
reducing allostatic load exerts beneficial health
effects, just as one may hypothesize that exces-
sive allostatic load exerts deleterious health ef-
fects. In the analogy of the home temperature
control system, maintaining a temperature of 60
degrees Fahrenheit in the summer would require
a great expenditure of energy and involve cool-
ing systems being on continuously, whereas in
the winter, maintaining the same temperature
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would be energy-efficient. One can imagine that
the likelihood of system breakdown would de-
pend on the extent of long-term energy use by
the effector systems.

Chronic effector system activation might alter
the efficiency of the homeostatic system itself. For
instance, chronic sympathetic nervous stimulation
of the cardiovascular system could promote car-
diovascular hypertrophy, “splinting” arterial
baroreceptors in stiff blood vessel walls, in turn
contributing to systolic hypertension and the risk
of heart failure, kidney failure, and stroke.

Moreover, an inappropriately large adrenomed-
ullary response to a stressor might exaggerate the
experience of emotional distress [55]. Exaggerat-
ed distress responses might increase the risk of
worsening an independent pathologic process,
such as in panic-induced angina pectoris [56,57].

In summary, this essay reflects a merging of
the homeostat theory of stress with the concept of
allostatic load, in attempting to understand the
relationships among stress, catecholamines, and
disease. Until this conceptual merging, the home-
ostat theory did not lead easily to testable predic-
tions about long-term effects of stress and distress;
and the concept of allostatic load did not incor-
porate determinants of that load as sensed discrep-
ancies between afferent information and setpoints

for responding, leading to patterned alterations in
activities of multiple effectors. Merging of the
homeostat theory of stress with the notions of al-
lostasis and allostatic load can provide a basis for
explaining and predicting physical and psychiat-
ric effects of acute and chronic stress.

Stress is an interdisciplinary topic, and under-
standing health consequences of stress requires
an integrative approach. Research and ideas about
stress must must move beyond considering only
one effector system, such as the “sympathoadre-
nal system,” and only one monitored variable,
such as serum glucose levels, to incorporate mul-
tiple effectors and multiple homeostatic systems
that are regulated in parallel. They must also move
beyond the notion of a single set of ideal values
for monitored variables – homeostasis – to incor-
porate dynamic changes in homeostatic settings -
allostasis. Merging of the homeostatis definitions
of stress and distress with the concept of allosta-
sis should provide a better understanding of the
roles of stress and distress, via catecholamine sys-
tems, in chronic diseases and also provide a con-
ceptual basis for the further development of sci-
entific integrative medicine.
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